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MIT AGI Mission: Engineer Intelligence

Provide a balance to “black box” reasoning

Impact on

Future Society
(2028+)

Human Utopia

Today’s Society
(2018)

Unchanged

Robot Dystopia
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Balance Between Paralyzing Technophobia and
Blindness to Big Picture Consequences
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Robot Dystopia

* Defining metric of disagreement is an engineering question:
How hard is to create human-level artificial intelligence?

e Can we build intuition about this without knowing how to build it?
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MIT AGI Mission: Engineer Intelligence

* Goal 1: Avoid the pitfalls of “black box” futurism thinking that results in
hype that is detached from scientific understanding

* Goal 2: Avoid the pitfalls of “I’'m just a scientist” that results in ignorance to
near-term negative consequences that are preventable with good

engineering

Google Intern :

keras.layers
keras.models
.data load_data

> X, Y, X_test, y test load_data()

7 def get_model(num_Layers):
model - Sequential()
range(num_layers):

model .add (Dense (100, on="sigmoid"))

model.compile(loss="mse", er="sgd")
model

1 best_model
, best_loss

i range(1, 10):
model - get_model(i)
model.fit(x, y)
loss - model.evaluate(x_test, y_test)
best_loss Non loss < best_loss:
best_loss loss
best_model - model

Media :

This Google Al created
its own ‘baby’ Al

Hmm Massachusetts
Institute of
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Kurzweil’s Law of Accelerating Returns

Exponential Growth of Computing

Twentieth through twenty first century
Loganithmic Plot
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Increasingly Faster Adoption of New Technology

Telephone

Electricity

Cars
Radio

———Fridge
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== Air Travel
Color TV
~—Credit Card
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Video Games

’ | PC
/ " Cell Phone
Internet
j ==—Digital Camera
=——MP3 Player

HDTV
Social Media

Smartphone

Adoption Rate
—
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Is the Singularity near?




Human Drive to Explore and
Uncover the Mysteries of the Universe

 What drives humans to explore the unknown?

* “For all the different forms it takes in different historical periods, for all the
worthy and unworthy motives that lie behind it, exploration—travel for the
sake of discovery and adventure—is a human compulsion, a human obsession
even; it is a defining element of a distinctly human identity, and it will never
rest at any frontier, whether terrestrial or extra-terrestrial.”

— Stewart Weaver, Exploration: A Very Short Introduction

Pytheas of Massalia, 325 B.C.E. Zheng He, 1405-1433
7,500 miles of ocean travel for first

known reporter of the Arctic voyages. 7 expeditions. First had 287
vessels and 27,780 men.

Christopher Columbus, 1492
Paved the way for European colonization
of Americas. PS1: Didn’t “discover”
Americas. PS2: His approach receives
harsh criticism modern scholarship.

China’s imperial expeditions. Treasure
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Human Drive to Explore and
Uncover the Mysteries of the Universe

“Thus, from the war of nature, from famine and death, the most
exalted object which we are capable of conceiving, namely, the
production of the higher animals, directly follows. ...

Whilst this planet has gone cycling on according to the fixed law of
gravity, from so simple a beginning endless forms most beautiful
and most wonderful have been, and are being, evolved.”

Charles Darwin’s Voyage of the Beagle (sailed in 1831)
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Human Drive to Explore and
Uncover the Mysteries of the Universe
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"The Earth is blue ... it is amazing,”
Yuri Gagarin, first human in space (April 12, 1961).
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Human Drive to Explore and
Uncover the Mysteries of the Universe

TV insider
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Human Drive to Explore and
Uncover the Mysteries of the Universe
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6.5099: Artificial General Intelligence

+
Lex Fridman Michael Glazer

Instructor TA

lack Terwilliger
TA

|ulia Kindelsberger
TA TA

Dan Brown

Website: agi.mit.edu
Email: agi@mit.edu

Slack: deep-mit.slack.com

For registered MIT students:

e Create an account on the website.

e Submit 5 new links to VoteAl and vote on 10.

e Submit entry to one of the competition

Projects
* DreamVision
 ANGEL
e EthicalCar
* VoteAl

Guest Speakers (see schedule)

Shirts free in-person, available online:

https://teespring.com/agi-2018
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ANGEL: Artificial Neural Generator of Emotion and Language
https://agi.mit.edu/angel
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EthicalCar: Machine Learning Approach
https://agi.mit.edu/ethicalcar

DeepTraffic _
Main Page - Leaderboard - About DeepTraffic Ad d h u m a n I Ife to

Americans spend 8 billion hours stuck in traffic every year.

h‘ Deep neural networks can help! h o
- the loss tunction
L]
5 IanesSide = 3;
H 6 patchesAhead = 38; =
- 7 patchesBehind = 18;
n 2 trainIterations = 106@0;
' o
L 1@ // the number of other autonomous vehicles controlled by your network
U 3 11 otherAgents = 8; // max of 9
M 12
= 13 var num_inputs = (lanesSide * 2 + 1) * (patchesAhead + patchesBehind);
-~ b U Apply Code/Reset Net Save Code/Net to File Load Code/Net from File
iS;\eed = Submit Model to Competition
72 mon < n
'
| Cars Passed: D X o =
: f =
195 )
- 8 .
g E s 3
O = Value Function Approximating Neural Network:
input(280)
| | | |
| ]
O LOAD CUSTOM IMAGE
Road Overlay: red v
None v
¥ : REQUEST VISUALIZATION
Simulation Speed:
»
Fast v
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VoteAl

https://agi.mit.edu/vote-ai

v, I m Vote on how informative the article is (whether you agree with it or not).
P E Click if you believe the article is more Postive toward the future impact of Al.

N m Click if you believe the article is more Negative toward the future impact of Al.

Title:
.
Link:
.
Submit
I II m - m:;:::::’,?eﬁs For the full updated list of references visit: MIT 6.5099: Artificial General Intelligence Lex Fridman January
II Technology https://agi.mit.edu/references https://agi.mit.edu lex.mit.edu 2018



https://agi.mit.edu/references
https://agi.mit.edu/vote-ai

Lectures and Guest Talks

Lecture Mon,Jan 22, 7pm Room 54-100
Artificial General Intelligence
[ Slides ]-[ Lecture Video ] (available Soon)

Guest Talk Tue, Jan 23, 7pm Room 54-100
Josh Tenenbaum: Computational Cognitive Science

Professor, MIT

Guest Talk Wed, Jan 24, 1pm Room 10-250
Ray Kurzweil: How to Create a Mind

Google

Guest Talk Thu, Jan 25, 7pm Room 54-100
Lisa Feldman Barrett: Emotion Creation

Northeastern University

Guest Talk  Fri, Jan 26, 7om Room 54-100
Nate Derbinsky: Cognitive Modeling

Northeastern University

Guest Talk Mon, Jan 29, 1:30pm Room 26-100
Andrej Karpathy: Deep Learning

Director of Al, Tesla

Previously: OpenAl, Stanford University

7

Guest Talk Mon, Jan 29, 7pm Room 54-100
Stephen Wolfram: Knowledge-Based Programming

Wolfram Research

Guest Talk Tue, Jan 30, 7pm Room 54-100

Richard Moyes: Al Safety and Autonomous Weapon Systems

Co-Founder and Managing Director, Article36

Guest Talk Wed, Jan 31, 7pm Room 54-100
Marc Raibert: Robotics

CEO, Boston Dynamics

Previously: MIT

Guest Talk Thu, Feb 1, 7pm Room 54-100
llya Sutskever: Deep Reinforcement Learning

Co-founder, OpenAl

Previously: Google Brain, Stanford, U of Toronto

Lecture Fri, Feb 2, 7pm Room 54-100
Human-Centered Artificial Intelligence
[ Slides ]-[ Lecture Video ] (available Soon)

Hmm Massachusetts
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Josh Tenenbaum, MIT

Computational Cognitive Science
Tue, Jan 23, 7pm (Room 54-100)

/-}\)\ 5 v/\‘ .
a2 Common sense understanding: How can we
e ' >> see a world of physical objects, their
A interactions and our own possibilities to act
! 3 and interact with others (“intuitive physics”)
s e PRt Bl — not simply classify patterns in pixels?

* Rapid model-based learning: How can we
learning new concepts from so little
experience — often just a single example?

* Integrating best ideas of how to think about

i intelligence computationally:
\y * Probabilistic generative models
* Symbol-processing architectures
* Neural networks
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Ray Kurzweil, Google

Future of Intelligence, Artificial and Natural
Wed, Jan 24, 1pm (Room 10-250)

Exponential Growth of Computing
Twentieth through twenty first century
Logarithmic Plot

All Human Brains
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Lisa Feldman Barrett, NEU

Emotion Creation
Thu, Jan 25, 7pm (Room 54-100)

ARRA

Anxiety Love Depression Contempt Pride Shame Envy

LIt
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Re-Enacting Intelligence

 Start with human data and manipulate its visual and auditory contents

Synthesized texture Combined

mmm  Massachusetts i isit: . e . .
I II I I nsttte o For the full updated list of references visit: [197' 203] MIT 6.5099: Artificial General Intelligence Lex Fridman January
ay

https://agi.mit.edu/references https://agi.mit.edu lex.mit.edu 2018


https://agi.mit.edu/references

Sophia: Embodied Re-Enactment

(PS: Sophia is not a strong NLP system)
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ANGEL: Artificial Neural Generator of Emotion and Language
https://agi.mit.edu/angel
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Nate Derbinsky, NEU
Cognitive Modeling

Fri, Jan 26, 7pm (Room 54-100)

Soar Structure

Symbolic Long-Term Memories

Procedural Semantic Episodic
CJ0—=1
\ ¥ L3 ¥ ¥ -
Reinforcement || Chunking Semantic Episodic
Leaarning Leaming Leaming
' O e 3
Symbolic Working Memory i
i
o .
: 3 Y

Spatial Visual System (SVS) | controller
Object-based continuous metric space

Supports mental imagery
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Andrej Karpathy
Deep Learning

Mon, Jan 29, 1:30pm (Room 26-100)
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red shirt on a man jelephant is standing
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large green
trees

trunk of an

ball is
white '
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g elephant
dis b shadow on
roundci r n
o o elephant is standing the ground
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Deep Learning:

Our intuition about what’s “hard” is flawed (in complicated ways)

“Encoded in the large, highly evolve sensory and motor portions of the human brain is a billion years of experience about the
nature of the world and how to survive in it.... Abstract thought, though, is a new trick, perhaps less than 100 thousand years old.
We have not yet mastered it. It is not all that intrinsically difficult; it just seems so when we do it.”

- Hans Moravec, Mind Children (1988)

Visual perception: 540,000,000 years of data
Bipedal movement: 230,000,000 years of data
Abstract thought: 100,000 years of data

Prediction: Dog + Distortion Prediction: Ostrich
W Massachusetts For the full updated list of references visit: MIT 6.5099: Artificial General Intelligence Lex Fridman January
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Deep Learning is Representation Learning

(aka Feature Learning)

Output
(object identity)

Deep
Learning

3rd hidden layer

(object parts)

Representation
Learning

2nd hidden layer
(corners and
contours)

Machine
Learning

Lst hidden layer
(edges)

Visible layer

Artificial
Intelligence

(input pixels)

Intelligence: Ability to accomplish complex goals.

Understanding: Ability to turn complex information to into simple, useful information.
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Deep Learning is Representation Learning

(aka Feature Learning)

Task: Draw a line to separate the blue curve and red curve

I BB Massachusetts For the full updated list of references visit: MIT 6.5099: Artificial General Intelligence Lex Fridman January
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Deep Learning: Scalable Machine Learning

Output
Deep f
Learning
Ontput Output Mepping figm
features
(D)
(&)
5 i t i
= , Additional
'6 Most Leamlng Satout Mapping from Mapping from layers of more
. N
b A|gOl'Itth 3 features features abstract
g features
Hand- Hand- Sitinle
designed designed Features S
. features
|)l'( IZ A 11"(”][]'4‘\
Input Input Input Input
) . Deep
Rule-based o learning
. e machine
systems learning Representation
learning
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Biological * Thalamocortical brain network (simulation video shown below)

* 3 million neurons, 476 million synapses

Neural

Full human brain:
N etWO rk e 100 billion neurons, 1,000 trillion synapses

MRS BOLD (Coronal View}:

I II W Massachusetts For the full updated list of references visit: [142] MIT 6.5099: Artificial General Intelligence Lex Fridman January
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Artificial * Human neural network: 100 billion neurons, 1,000
trillion synapses

Neural
Network

* ResNet-152 neural network: 60 million synapses
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MIT 6.5099: Artificial General Intelligence Lex Fridman January
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Neuron: Biological Inspiration for Computation

Differences (among others):

* Neuron: computational building
block for the brain

impulses carried
toward cell body

branches
dendrites ‘,/ W/ of axon
N N 4
3\ \ ‘K / "f( V“ axon
nucleus“\;@ o ,{fé t |
= \ erminals
//“'// “\\\ impulses carried
Y away from cell body
cell body
Lo wy
e o - Synapsh
axon from a neuron
WoTo
cell body F (Z“‘ 2 —b)

E w;x; + b
i

L
output axon

activation
function

(Artificial) Neuron: computational
building block for the “neural network”

Parameters: Human brains have ~10,000,000
times synapses than artificial neural networks.
Topology: Human brains have no “layers”.
Topology is complicated.

Async: The human brain works
asynchronously, ANNs work synchronously.
Learning algorithm: ANNs use gradient
descent for learning. Human brains use ... (we
don’t know)

Processing speed: Single biological neurons
are slow, while standard neurons in ANNs are
fast.

Power consumption: Biological neural
networks use very little power compared to
artificial networks

Stages: Biological networks usually don't stop
/ start learning. ANNs have different fitting
(train) and prediction (evaluate) phases.

Similarity (among others):

Distributed computation on a large scale.

l - Massachusetts
Institute of

For the full updated list of references visit:
Technology [18' 143]

https://agi.mit.edu/references

MIT 6.5099: Artificial General Intelligence
https://agi.mit.edu

Lex Fridman January
lex.mit.edu 2018


https://agi.mit.edu/references

Artificial Neurons

0.7
0.6 sum bias f” '
14
Start
1. weigh 2.sumup 3. activate

Feed Forward Neural Network Recurrent Neural Network

I BB Massachusetts For the full updated list of references visit: MIT 6.5099: Artificial General Intelligence Lex Fridman January
I I Institute of h . L [78] . i | it.ed
Technology ttps://agi.mit.edu/references https://agi.mit.edu ex.mit.edu 2018



https://agi.mit.edu/references

What can we do with Deep Learning?

Input Learning Correct
Data System Output
* Number * Number

Vector of numbers
Sequence of numbers
Sequence of vectors of numbers

Vector of numbers
Sequence of numbers
Sequence of vectors of numbers

one to one one to many many to one many to many many to many
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Deep Learning from Human and Machine

{4 n au ”
Teachers Students
\
Supervised
Human — .
Learning
o" H H 124
Memorization
Human —_— Augmented
Supervised
Machine —_— Learning y
- N
Human — Semi-
Supervised
Machine —_— Learning
IIR . 124
> easoning
Human > Reinforcement
Machine —_— Learning P
. o" H V24
Machine —» | Unsupervised | ____ Understandlng
Learning
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Past and Future of Deep Learning Breakthroughs

Microprocessor Transistor Counts 1971-2011 & Moore's Law

2,600,000,000+ * ComPUte
1,000,000,000 - CPUS, GPUS, ASICS
P  Organized large(-ish) datasets
B Imagenet
S 10,000,000 pount doubing every o s
5  Algorithms and research:
2 1,000,000+
2 Backprop, CNN, LSTM
’_
100,000 Y
e Software and Infrastructure
oo{ iy Git, ROS, PR2, AWS, Amazon Mechanical
23000 e Turk, TensorFlow, ...
e - * Financial backing of large companies
Google, Facebook, Amazon, ...
CPU GPU
MULTIPLE CORES THOUSANDS OF CORES
W Massachusetts or the full updated list of references visit: . : Artificial General Intelligence ex Fridman anuar
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Current Challenges

* Transfer learning: Unable to transfer representation to most reasonably
related domains except in specialized formulations.

* Understanding: Lacks “reasoning” or ability to truly derive “understanding” as
previously defined on anything but specialized problem formulations.
(Definition used: Ability to turn complex information to into simple, useful
information.)

* Requires big data: inefficient at learning from data
* Requires supervised data: costly to annotate real-world data

* Not fully automated: Needs hyperparameter tuning for training: learning
rate, loss function, mini-batch size, training iterations, momentum,
optimizer selection, etc.

* Reward: Defining a good reward function is difficult.

* Transparency: Neural networks are for the most part black boxes (for real-
world applications) even with tools that visualize various aspects of their
operation.

* Edge cases: Deep learning is not good at dealing with edge cases.
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Stephen Wolfram

Knowledge-Based Programming
Mon, Jan 29, 7pm (Room 54-100)

#WolframAlpha .

nt to calculate or know about:

” C”3 “QQ C}Q ol ’
OO0 0L
COCOOGO0
OO0
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“Artificial Life Simulation”:

Cellular Automata and Emerging Complexity

MIT 6.5099: Artificial General Intelligence
https://agi.mit.edu



Richard Moyes, Article36

Al Safety and Autonomous Weapon Systems
Tue, Jan 30, 7pm (Room 54-100)

Vehicles deployed from 3 F/A-18s

Ground Control Station Telemetry Video
(Approximately 8x speed up)

III | ssacl s visit: MIT 6.5099: Artificial General Intelligence
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Marc Raibert, CEO, Boston Dynamics

Robots in the Real World
Wed, Jan 31, 7pm (Room 54-100)
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llya Sutskever, Co-Founder, OpenAl

Deep Reinforcement Learning
Thu, Feb 1, 7pm (Room 54-100)
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(Toward) General Purpose Intelligence:

Pong to Pixels

Policy Network:

raw pixels hidden layer

' 7/ probability of
-v;i . moving UP

i"“""w

RIS . .

IS '

EER 7
21

Vs

* 80x80 image (difference image)
e 2 actions: up or down
* 200,000 Pong games

This is a step towards general purpose
artificial intelligence!
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AlphaGo (2016) Beat Top Human at Go

Human expert
positions

Supervised Learning
policy network

Reinforcement Learning

policy network
| ‘Self Play : ; 3 ‘ ;

Self Play ’

Self-play data

Value network

Computer Programs Calibration Human Players

DeepMind challenge match

AlphaGo (Mar 2016)
4-1
Nature match
AlphaGo (Oct 2015)
50
KGS

Crazy Stone and Zen

'

P Lee Sedol (9p)
R v Top player of
N past decade
~ o,

¢4 Beats

Fan Hui (2p)
3-times reigning
Euro Champion

Amateur
humans

For the full updated list of references visit:
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AlphaGo Zero (2017): Beats AlphaGo

5000

4000
3000
2000

1000 -

Elo Rating

~1000 -

-2000 -

T ] ] T 1

0 5 10 15 20 25 30 35 40

...
-
-
-

=== AlphaGo Zero 40 blocks  eeee AlphaGo Lee esee AlphaGo Master

I II B Massachusetts For the full updated list of references visit: [149] MIT 6.5099: Artificial General Intelligence Lex Fridman January

Institute of )
II TZZ,,',,':,.?,;’,, https://agi.mit.edu/references https://agi.mit.edu lex.mit.edu 2018



https://agi.mit.edu/references

__________________

Representation

_________ T

Machine Learning

_______ v

. Knowledge ——

_______ T

Reasoning

v

Planning

Open Question:
What can we not do with

Deep Learning?

sensors

percepts

actions

effectors
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Representation

_________ T

Machine Learning

Yo

. Knowledge &——

_______ e

Reasoning

v

Planning

. Action

- A

Effector

Formal tasks: Playing board games,
card games. Solving puzzles,
mathematical and logic problems.

Expert tasks: Medical diagnosis,
engineering, scheduling, computer
hardware design.

Mundane tasks: Everyday speech,
written language, perception,
walking, object manipulation.

Human tasks: Awareness of self,
emotion, imagination, morality,
subjective experience, high-level-
reasoning, consciousness.

I Hmm Massachusetts
I I Institute of
Technology
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Representation
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Output
(object identity)

3rd hidden layer

(object parts)

Representation
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Machine Learning
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2nd hidden layer

(corners and

contours)
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(edges)
Reasoning
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Effector
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Representation <
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-------- ¢ Image Recognition: Audio Recognition:
If it looks like a duck Quacks like a duck

Representation o .
memmmee- v Activity Recognition:
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Machine Learning
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Lectures and Guest Talks

Lecture Mon,Jan 22, 7pm Room 54-100
Artificial General Intelligence
[ Slides ]-[ Lecture Video ] (available Soon)

Guest Talk Tue, Jan 23, 7pm Room 54-100
Josh Tenenbaum: Computational Cognitive Science

Professor, MIT

Guest Talk Wed, Jan 24, 1pm Room 10-250
Ray Kurzweil: How to Create a Mind

Google

Guest Talk Thu, Jan 25, 7pm Room 54-100
Lisa Feldman Barrett: Emotion Creation

Northeastern University

Guest Talk  Fri, Jan 26, 7om Room 54-100
Nate Derbinsky: Cognitive Modeling

Northeastern University

Guest Talk Mon, Jan 29, 1:30pm Room 26-100
Andrej Karpathy: Deep Learning

Director of Al, Tesla

Previously: OpenAl, Stanford University

7

Guest Talk Mon, Jan 29, 7pm Room 54-100
Stephen Wolfram: Knowledge-Based Programming

Wolfram Research

Guest Talk Tue, Jan 30, 7pm Room 54-100

Richard Moyes: Al Safety and Autonomous Weapon Systems

Co-Founder and Managing Director, Article36

Guest Talk Wed, Jan 31, 7pm Room 54-100
Marc Raibert: Robotics

CEO, Boston Dynamics

Previously: MIT

Guest Talk Thu, Feb 1, 7pm Room 54-100
llya Sutskever: Deep Reinforcement Learning

Co-founder, OpenAl

Previously: Google Brain, Stanford, U of Toronto

Lecture Fri, Feb 2, 7pm Room 54-100
Human-Centered Artificial Intelligence
[ Slides ]-[ Lecture Video ] (available Soon)
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 MIT 6.5099: Artificial General Intelligence (first 2 weeks)

Timeline: AGI Approaches

Deep learning

Deep reinforcement Learning
Cognitive modeling

Computational cognitive science
Emotion creation

Knowledge based programming

Al Safety

Human-centered artificial intelligence

 MIT 6.5099: Artificial General Intelligence (in 2018)

Al ethics and bias

Creativity in generating music and art

Brain simulation

Computational neuroscience

Turing test and natural language processing
...and much more...

IIIII | ttt 1
Technology
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Thank You

DreamVision
https://agi.mit.edu/dreamvision

EthicalCar
https://agi.mit.edu/ethicalcar

DeepTraffic

Main Page - Leaderboard

Add human life to
the loss function.
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ANGEL
https://agi.mit.edu/angel

-—-\A
o >

VoteAl
https://agi.mit.edu/vote-ai

IC? e m Vote on how informative the article is (whether you agree with it or not).
P Click if you believe the article is more Postive toward the future impact of Al.

N m Click if you believe the article is more Negative toward the future impact of Al.
Title:

Link:

Submit
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